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Abstract

In recent years a microscopic model was developed[1, 2, 3] in order to unify the

physics of elementary particles and cosmology. The model introduces an underlying

microscopic level of invisible ‘tetron’ matter, the SSB of the SM being interpreted

as an alignment of isospin vectors of the tetrons. While earlier work has dealt with

the quark lepton spectrum[2, 4] and gravity[3], the present paper concentrates on

how the Higgs and the electroweak gauge bosons are to be interpreted as excitations

on the underlying structure.
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Der Kampf der Vernunft besteht darin,

dasjenige, was der Verstand fixiert hat,

zu überwinden.

G. W. F. Hegel
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It is widely believed that the Standard Model of elementary particles is only an effec-

tive low energy theory valid below a certain energy scale, which usually is supposed

to be of the order of 1-10 TeV, but may in fact be as large as the Planck scale1.

This view is based on the fact that the SM has many unknown parameters, most no-

tably the quark and lepton masses and mixings, but also the Higgs and gauge boson

masses and couplings - the Higgs field being needed for the spontaneous symmetry

breaking (SSB) to take place in the model.

A convincing and generally accepted physical understanding of the underlying dy-

namics responsible for the SM physics is still lacking. For example, in supersym-

metric grand unified theories fermion masses essentially remain free parameters.

Furthermore, those models usually introduce many more additional degrees of free-

dom without much ambition to determine them from first principles. The point is

that theories of that kind only extrapolate and extend the symmetries observed at

low energies to small distances and, as can be concluded from the variety of theories

floating around, that there is a strong amount of arbitrariness in this procedure.

In my opinion it is obvious that a determination of the free parameters is only

possible in a microscopic theory. Superstring theories and its offsprings seem to

offer a solution. However, although ’in principle’ able to determine the masses as

energies of string excitations, the approach is much to abstract and has not come

up with definite and verifiable predictions within almost 50 years.

The present article is devoted to a model which tries to give a microscopic meaning

to the Standard Model parameters. According to this model[1] our universe is a

3-dimensional elastic substrate expanding within a 6-dimensional space. The elastic

substrate is built from invisible constituents, called tetrons, forming tiny tetrahe-

drons which extend into the 3 extra dimensions and with bond length about the

Planck length and binding energy the Planck energy. Tetrons transform under the

fundamental spinor representation of SO(6,1). This representation is 8-dimensional

and sometimes called the octonion representation[5].

1Indeed, within the present model apart from dark matter effects many BSM effects are sup-

pressed by powers of the Planck length and therefore unobservable. The point is that tetron bonds

are extremely short ranged, of the order of the Planck length, c.f. Fig.1, and there is no additional

scale in between Fermi and Planck.
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Figure 1: The global ground state of the universe after the electroweak symmetry

breaking has occurred, considered at Planck scale distances. The big black double

arrow represents 3-dimensional physical space. aL is the magnitude of one tetra-

hedron within the 3 extra dimensions and aP the average distance between two

neighboring tetrahedrons. The small arrows are the isospin vectors defined in (4),

where actually each arrow stands for 2 vectors Q⃗L and Q⃗R which are aligned in the

ground state. Note that the set of arrows on a tetrahedron forms a tetrahedron

itself. The figure is a bit misleading, not only because the tetrahedrons do not ex-

tend into physical space, but also the relative magnitudes are not correctly drawn.

Namely, while aL and aP are of the order of the Planck length, the extension of the

tetrahedrons formed by the isospin vectors is dictated by the Fermi scale. While

gravity can be attributed to the elasticity of the coordinate bonds[3], the phenomena

of particle physics arise from the interactions between isospin vectors. The figure

shows how our universe looks like in the tetron model. It is part of a 6-dimensional

space and is a 3-dimensional ’monolayer’ of tetrahedrons each extending into the

remaining 3 extra dimensions. The monolayer ground state acts as a background

on which quarks and leptons glide as quasiparticle excitations. It has the proper-

ties of a Lorentz ether and is thereby not in conflict with Michelson-Morley type of

experiments.
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More in detail, the global ground state of our universe looks like illustrated in Fig.1,

after the electroweak symmetry breaking has occurred, considered at Planck scale

distances. It consists of an aligned system of tetrahedrons (the ‘fibers’) each formed

by the isospin vectors of 4 tetrons and extending into the 3 extra dimensions. The

picture is a little misleading because in the tetron model the physical space (‘base

space’) and the extra dimensions are assumed to be completely orthogonal.

Before the symmetry breaking the isospin vectors of the tetrons are directed ran-

domly, thus exhibiting a local SU(2) symmetry, but once the temperature drops

below the Fermi scale vF , they become ordered into a repetitive tetrahedral struc-

ture, thereby spontaneously breaking the initial SU(2) symmetry. This symmetry

actually is a local one, because isospins can be rotated separately over each point of

the base space. Note that vF is the order parameter of the SSB and as such can be

related to the length of the aligned isospin vectors.

The tetrons in Fig.1 are depicted as dots. With respect to the decomposition into

the (3+1)-dimensional base space and the 3 extra dimensions, a tetron Ψ possesses

spin 1
2
and isospin 1

2
. This means it can rotate independently in physical space and

in the extra dimensions, and corresponds to the fact that Ψ decomposes into an

isospin doublet

Ψ = (D,U) (1)

of two ordinary SO(3,1) Dirac fields U and D.

SO(6, 1) → SO(3, 1)× SO(3)

8 → (1, 2, 2) + (2, 1, 2) = ((1, 2) + (2, 1), 2) (2)

where the ‘octonion representation’ 8 used to describe a tetron comprises particle

and antiparticle degrees of freedom within one representation.

The 24 known quarks and leptons arise as eigenmode excitations of the tetrahedral

fiber structure. While the laws of gravity are due to the elastic properties of the

tetron bonds[3], particle physics interactions take place within the internal fibers,

with the characteristic internal energy being the Fermi scale. All ordinary matter

thus is constructed as quasiparticle excitations of isospin vectors. Since the quasi-

particles fulfill Lorentz covariant wave equations, they perceive the universe as a

3+1 dimensional spacetime continuum.
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As set out in earlier publications the tetron model shows the following features:

–The SU(2)L×U(1) gauge group of the SM is related to the iso-magnetic Heisenberg

SU(2), and the SM SSB can be obtained from a global ordering of internal magnets

(‘iso-magnets’). The chiral nature of the SM SU(2)L can be derived from the hand-

edness of the tetrahedrons, the configuration with opposite chirality given by isospin

vectors pointing inwards instead of outwards[1]. After the SSB the remaining sym-

metries are the strong interaction symmetry group, the U(1) of electromagnetism

and the discrete tetrahedral symmetry group G4 of the isospin vectors.

–Due to the pseudovector property of the isospin vectors, G4 actually is a Shubnikov

group[6, 7]. This means, while the coordinate symmetry is S4, the arrangement of

isospin vectors respects

G4 := A4 + CPT (S4 − A4) (3)

where A4(S4) is the (full) tetrahedral symmetry group. G4 is unbroken and holds

down to the lowest energies. It has only 1- and 3-dimensional representations and

describes all 24 SM quarks and leptons after the SSB.

–Quarks and leptons are interpreted as ‘iso-magnons’ of the discrete ‘iso-magnetic’

structure and their spectrum can be determined from the dynamical principles of the

model, namely from the interaction laws for the isospin vectors. The calculation[2]

proves the dominance of the Dzyaloshinskii-Moriya[9] (DM) interactions within one

tetrahedron, so that actually each internal tetrahedron is a (frustrated) DM isomag-

net, cf. the discussion in [2], where also the hierarchy in the masses and the mixing

matrices of quarks and leptons has been explained.

–In contrast, DM interactions must not play a role in the ‘inter-tetrahedral’ interac-

tions of tetrons from two different tetrahedrons, because DMI prefer isospins at 90

degrees while all tetrahedrons are aligned in parallel after the SSB according to Fig.1,

and this presupposes dominance of the aligning inter-tetrahedral ‘iso-ferromagnetic’

Heisenberg interactions. As proven in the present work, this Heisenberg interaction

allows to determine the masses of W±, Z and Higgs in terms of tetron properties,

while leaving the photon and the Goldstone modes massless.

–The existence of a fourth family of quarks and leptons. This family, however, is

distinct from the other three, not only because it has a very massive neutrino but

also because its couplings are much different from the SM. The point is that the
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8 Dirac particles of this family do not arise from vibrations of ‘iso-magnetizations’

Ψ†τ⃗Ψ in (5) but of ‘iso-densities’ Ψ†Ψ, and therefore they do not obtain their masses

via the Higgs mechanism.

–The tetron interpretation of gravity and dark energy leads to an oscillatory uni-

verse (after condensation from a dense tetron gas and subsequent rapid expansion)

and a time dependent Newton constant[3]. Measuring the oscillation frequency in

future dark energy surveys will allow to determine the full size of the universe (not

just its visible part).

In the present paper the analysis is extended to how the Higgs and gauge boson

masses and the Weinberg angle can be understood and even determined within the

tetron framework. The idea is that excitations of tetrons of 2 neighboring tetrahe-

drons are responsible for the observed boson sector. Since there are no vibrations

in the base physical space one is allowed there to take tensor products of the Dirac

fields (1, 2)+(2, 1) in (2) to arrive at spin-0 and spin-1 objects (in the non-relativistic

limit it is simply 2 ⊗ 2 = 1 ⊗ 3). The isospin vibrations then appear, so to speak,

on top of the spin-1 and -0 arrangements in the base space.

More in detail the above mentioned isospin vectors are defined as

Q⃗L =
1

4
Ψ†(1− γ5)τ⃗Ψ Q⃗R =

1

4
Ψ†(1 + γ5)τ⃗Ψ (4)

where τ⃗ = (τx, τy, τz) are the isospin Pauli matrices, x, y and z being the coordinates

of the 3 extra dimensions. Ψ is a tetron field concentrated on one of the corners

of a tetrahedron and transforming as the representation 8 introduced in (1) and

(2). Each of the arrows in Fig.1 stands for a pair of pseudovectors ⟨Q⃗L⟩ and ⟨Q⃗R⟩
on each tetrahedral site, where ⟨...⟩ denotes the ground state/vacuum expectation

values, i.e. after the SSB. ⟨Q⃗L⟩ = ⟨Q⃗R⟩ pointing outward in the radial direction

guarantees for the tetrahedral Shubnikov symmetry2.

In the present paper I will consider a simplified model where chiral contributions

are not included. Instead of (4) I will restrict to one vector only

S⃗ := Q⃗L + Q⃗R =
1

2
Ψ†τ⃗Ψ (5)

2According to (2) the tetron representation 8 contains both particle and antiparticle degrees of

freedom. Q⃗L and Q⃗R cover 6 of its 8 dof.The remaining 2 dof correspond to the ‘densities’ Ψ†Ψ

and Ψ†γ5Ψ whose fluctuations actually are dark matter candidates[1]. Furthermore, Q⃗L and Q⃗R

are particularly useful to handle because quantum mechanically they commute with each other[10].
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on each corner of the tetrahedrons and postpone the discussion of chiral effects to

later versions of this work. For later use the definition of the tetron density

n =
1

2
Ψ†Ψ (6)

is included. Note that all of these quantities have an energy dimension of 3, which

means S⃗ is not really an angular momentum (which would have dimension 0), but

an (angular momentum) density, as are the ‘Hamiltonians’ discussed below.

The SM Higgs and gauge boson fields are to be considered as excitations of two

tetrons Ψ1 and Ψ2 belonging to two neighboring tetradedrons 1 and 2. So the next

step is to consider Heisenberg interactions of 2 vectors S⃗1 and S⃗2 of type (5) sitting

in neighboring tetrahedrons and interacting via an iso-ferromagnetic Hamiltonian.

The boson masses will then arise from inter-tetrahedral isospin interactions (while

quark and lepton masses are due to inner-tetrahedral ones). As excitations of single

pairs they can be constructed from vibrations δ around the ground states, i.e. one

may take the 2 tetrons in the 2 neighboring tetrahedrons to be of the form

Ψ1 =

[
δD1

⟨U⟩+ δU1

]
Ψ2 =

[
δD2

⟨U⟩+ δU2

]
(7)

Such an ansatz is always allowed since one is just writing the fields as a vev ⟨Ψ1,2⟩ =
(0, ⟨U⟩) plus a rest. The vevs corresponds to a state where the isospin vectors S⃗1,2

are aligned in the ground state and point in the z-direction.

Let me begin with the spin-1 fields. If one considers vibrations of tetrons 1 and 2

in (7), there are altogether 8 vibrational dof. Quite in general 4 of the 8 vibrational

eigenstates are given by

δRe(D1 −D2), δ Im(D1 −D2), δRe(U1 − U2), δ Im(U1 − U2) (8)

whereas the other 4 combinations (with the plus sign) do not play any physical role

in an environment of many tetrahedrons.

The expressions (8) are associated to vibrations of S⃗x , S⃗y, n and S⃗z, respectively,

to be interpreted as the SM fields Wx, Wy, B and Wz. The physical states W
± then

correspond to δ(D1 −D2) and δ(D1 −D2)
†, and photon and Z-boson to a mixture

of the U-vibrations, as explained below after (12).
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In contrast to the quark and lepton mass calculation[2] one should start here from

the Hamiltonian and not from the eom, because density contributions can then be

included more easily. The relevant expression due to isomagnetic exchange is purely

of ‘ferromagnetic’ type, because 2 isospin vectors of neighboring tetrahedrons tend

to align, and as discussed before there is no contribution from DM-interactions.

H
(1)
inter = − 1

Λ2
[g2S⃗1S⃗2 + g′2n1n2] ∼ c2W S⃗1S⃗2 + s2Wn1n2 (9)

where inter refers to the inter-tetrahedral interactions and the superscript (1) to

the spin-1 case, i.e. to the gauge bosons. g and g′ are the SM gauge couplings and

sW and cW sine and cosine of the Weinberg angle.

In order to derive (9) one should remember that the isospin vectors S⃗ generate the

Lie group of isospin rotations which in the SM corresponds to the SU(2)L gauge

symmetry with coupling g while the tetron densities generate the SM U(1) gauge

symmetry with coupling g′.

Λ is a new energy scale whose significance will be discussed later after (11). It turns

out that as far as the SM is concerned, Λ can be absorbed in a rescaling of the

tetron fields. This means that the values of g and g′ effectively determine (and are

determined by) the strength of the interaction between isospinors in neighboring

tetrahedrons.

Note that in the case of iso-ferromagnetic exchange (as contrasted to the iso-anti-

ferromagnetic case) the interaction ∼ n1n2 among the densities is well known to

arise[8] inducing density vibrations. This is often ignored in the traditional Heisen-

berg model (used to describe ferromagnetic magnons) where constant densities are

assumed for reasons of simplicity, but will play an important role below in γ-Z

mixing and in the determination of the Z and Higgs mass.

H
(1)
inter is reminiscent of the negative −D(x1 − x2)

2 ≡ −Dx2 of the potential of a

coupled harmonic oscillator, corresponding to a parabola in the eigencoordinate x.

For a SSB to occur, however, an additional positive contribution ∼ x4 is needed in

the potential

V (x) = −Dx2 + hx4 (10)

to produce a minimum. (This is obviously similar in structure to the form of the

SM Higgs potential.)
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Note that a quartic term is not included in (9). Its existence has to be assumed,

but for determining the masses of the excitations knowledge of its precise form is

actually not needed. The point is that the masses can be given in terms of the

quadratic coefficients alone, because they are determined by the curvature at the

minimum of the potential. This curvature turns out to be +2D in the case of (10)

and so does not to depend on h but only on D. The situation is the same in the case

of (9) and in fact also in the Higgs potential case where m2
H = 2µ2 does not depend

on the Φ4 coupling value.

One should now work out (9) with the help of (7) and identify the masses from

the terms quadratic in δ. More precisely, the coefficient of ∼ [δRe(D1 − D2)]
2 +

[δ Im(D1 −D2)]
2 yield the mass squared of W±. One obtains the SM result for the

W-mass m2
W = g2v2F/4 under the condition that the order parameter, i.e. the Fermi

scale vF is given by

v2F
2

=
|⟨U⟩|2

Λ
(11)

In principle, the coefficient of [δ Im(U1 −U2)]
2 should yield the mass squared of the

Wz and [δRe(U1 − U2)]
2 of the U(1) field B. As turns out, however, the masses of

the neutral gauge bosons cannot be generated this way. To remedy the situation

and also obtain the correct mixing of the Wz and B boson field one has to allow for

a complex vev

⟨U⟩ = |⟨U⟩| exp (iθW ) (12)

The phase determines (and is determined) by the Weinberg angle θW = arctan(g′/g),

because evaluation of (9) then leads to one massive combination Z = Wzcw − BsW

and one massless combination A = Wzsw +BcW , with the SM result for the Z-mass

m2
Z = (g2 + g′2)v2F/4 being recovered.

At first sight Λ according to (9) seems to crucially affect the strength of isomag-

netic exchange. However, according to (11) the ’strength’ of the electroweak SSB

is determined by a ratio involving ⟨U⟩ and Λ, and one can actually grossly absorb

all effects of Λ in a redefinition of the tetron fields Ψ → Ψ/
√
Λ. This rescaling

can be interpreted as reducing the ‘high’ Planck scale values of the tetron fields to

the ‘low’ level of the Fermi scale. Thus, from the very perspective of the SM, the
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gauge couplings g and g′ alone determine (and are determined by) the strength of

the isomagnetic exchange.

So, from the viewpoint of the low energy SM, the absolute values of |⟨U⟩|2 and Λ are

not relevant, but only their ratio vF is. On the other hand, from the viewpoint of the

tetron model the values of |⟨U⟩| and Λ each have a separate physical meaning, and so

have the ratios g2/Λ2 and g′2/Λ2, because these quantites according to (9) correspond

to the iso-ferromagnetic couplings of tetron isospins and should be calculable from

first principles, i.e. from the form of the fundamental tetron interactions.

If one thinks more closely, only the ratio g/g′ (i.e. the Weinberg angle) and the Fermi

scale vF are related to the isomagnetic exchange forces, while the third independent

parameter, which is given by the fine structure constant, relates more to the direct

(as opposed to exchange) interactions of tetrons, and in fact to gravity3.

Within the tetron approach it is natural to assume that the measured value of the

Weinberg angle of θW = (28.70 ± 0.05)◦[11] can be related to the geometry of the

tetrahedron - in some way or other. In the following I want to suggest 2 possibilities:

(i) ‘Hybridization’ of isospin-1 vibrations: The 3 orthogonal directions in which S⃗x ,

S⃗y and S⃗z vibrate do not fit well into the tetrahedral structure of 4 tetrons and there-

fore the states ‘hybridize’ with the radially symmetric vibration of the density4. For

the simplified model considered in this work, with ⟨S⃗⟩ along the z-direction, this

3Looking at its definition

α =
e2

4πϵ0ℏc
(13)

the fine structure constant is the only dimensionless combination which can be built from the

quantities e2/ϵ0, h and c. Although α itself is not an energy, it can be written as a ratio of forces

or energies. Namely, due to ℏc = GM2
P one can rewrite (13) as

α =
e2

4πϵ0r(2)
/
GM2

P

r(2)
(14)

i.e. as the ratio of the electrostatic Coulomb (force) energy and the gravitational (force) energy of

2 point particles with elementary charge e and Planck mass MP at an arbitrary distance r. From

this point of view the gravitational force is by no means small as compared to the electric force,

but - for such tetron-like test particles - is 137 times stronger!
4This is similar to what is called sp3 hybridization in the tetrahedral molecule of methane, where

the mixing of one s-orbital and three p-orbitals leads to a wave function of the form (s+
√
3p)/2 ≈

sW s+ cW p.
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amounts to a mixture of the n and Sz vibrations with a mixing angle of exactly

θW = 30◦ and a corresponding relative magnitude of g/g′ =
√
3.

(ii) Enforcement of the Broglie-Bohr quantization condition: In order that the com-

plete wave function for the ground state corresponds to a standing wave around

the 4 corners of a tetrahedron, each tetrahedral corner must contribute a phase of

θT = arccos(−1
3
) ≈ 109.5◦ because this is the angle between any 2 isospin vectors in

a tetrahedron. On the level of tetrons (which are fermions) this amounts to a phase

of θT/2, and if without loss of generality one swaps the role of sine and cosine, one

ends up with a mixing angle of θW = θT/4 ≈ 27.4◦.

We now turn to the spin-0 states of the SM. They constitute the complex Higgs

doublet of the form

Φ =
1√
2
exp(

i

vF
τ⃗ ξ⃗)

[
0

vF +H

]
(15)

where ξ⃗ is the triplet of Goldstone bosons and H the physical Higgs field. As explicit

from (15), the ξ fields can be gauged to zero by an appropriate SU(2) transformation.

This means, although the concept of Goldstone bosons is crucial to understanding

symmetry breaking in the Standard Model, there are no physical Goldstone bosons

in the observed spectrum.

How does this translate to the microscopic theory? The isospin vibrations (8) can

in principle generate fields ξx, ξy, H andξz. Since spin-0 and spin-1 wave functions

are different in the base space, ξx, ξy, H and ξz are different from the gauge boson

modes, and due to this difference the exhange integrals and accordingly the couplings

appearing in the iso-magnetic Hamiltonian will be different as well. Instead of (9)

one has

H
(0)
inter = −µ2

Λ4
n1n2 (16)

where Λ is as above and µ2 the parameter well-known from the Higgs potential

leading to a Higgs mass of m2
H = 2µ2. The missing Heisenberg contribution ∼ S⃗1S⃗2

in (16) makes explicit that there are actually no vibrations which would correspond

to particles ξx, ξy and ξz.

The spin-0 case is a rather trivial application of the microscopic model. In essence

one is only re-interpreting the quadratic term of the Higgs potential by tetron prop-
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erties. The hard task is to really calculate the relevant exchange integrals from

fundamental tetron interactions.

Let me finish the paper with some personal remarks about the history of the mi-

croscopic model. The ground laying idea actually started as early as 1987. When

I visited Fermilab that summer, I was accompanied by my wife and our son half a

year old. We stayed for a month and were given the opportunity to live in one of

the traditional houses on the Fermilab property. We did it with ease to bring the

fire brigade to the scene on one of the first days.

At that time there were the ‘preon models’ - assuming quarks and leptons to be

composed of smaller constituents - and the community had just agreed that such

models cannot be built in a natural and consistent manner, most of all because

of the extreme difference between the pointlikeness and necessarily high masses of

the constituents and the relatively small masses of most quarks and leptons. I had

followed the ansatz with curious interest, but not written any paper on the subject,

feeling that this kind of approach was missing some essential ingredient.

Anyhow my main work was on QCD and my task at Fermilab was to discuss prop-

erties of hadron jets with someone from the lab staff. We had some interesting

conversations, but when it came to filling a permanent scientific position the other

year, I got away empty handed, as in all other institutions where I ever introduced

myself.

The colleague had time only in the afternoons, so in the mornings I felt free to

try to invent some ideas about the underlying nature of the quark lepton multiplet

structure. There are so many reliable experimental results in that area that I thought

quark and lepton properties to be a good starting point in order to develop a really

fundamental theory. I further thought that if anything is of importance at all in

this world of shadows, it is not biology or logic, not money or the rules of societies,

but the deep structure of the physical universe.

I did not want to follow the mainstream SUSY, GUTs, Strings etc. These models

emphasize symmetry (which is important, no question) but do not place enough

value on a possible real material background, on which in my opinion any symmetry

structure having to do with matter has to rely. I wanted to take this into account,

when starting to develop a unified theory of my own. Since I had made elaborate
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studies in natural philosophy, I thought that I could do better.

In reality, my considerations did not start with such high demands. I set my sights

lower and tried to get forward step by step. So actually, during my Fermilab stay I

did not come up with final answers. I just made some observations which were to

become important in later years. Namely, I noticed that the total of 24 quarks and

leptons had some structural similarity to the ordering of the 24 group elements of

the tetrahedral point group. Could be an accident, but I scanned many possibilities

and did not find better answers.

Since as a young student I had some interest in theoretical chemistry, I began to

restudy some textbooks on the tetrahedral point group with the idea in mind that

tetrahedrons could supply a quark lepton substructure in a somehow more consistent

manner than preon models do. It was only much later, in the new millenium, that

I began to consider physical space to be made up of a discrete tetrahedral isospin

arrangement and the observed ‘elementary particles’ as excitations thereon.

The tetrahedral point group stayed in my head for a while, before I decided to

publish[12], at least as a preprint, in 1998. Shortly afterwards I left scientific research

because I did not find a permanent position. For a while I was frustrated and avoided

all physics topics. It was only another 10 years later and after writing a novel of

about 1000 pages, dealing with the side issues of life, that I returned to the problem,

now as a private scholar and at first in a rather playful manner.

The first main problem I encountered was that the representation spaces of the

tetrahedral group do not match the quark lepton multiplet structure exactly. In

2012 I realized that one of the tetrahedral black-and-white point groups when taken

over from spin to isospin space does a better job. Accordingly, I introduced a

tetrahedron of isospin vectors, and considered their interaction as a sort of ‘iso-

magnetism’. Quarks and leptons were then interpreted as vibrations of the isospin

vectors. I noticed quite soon that there naturally arise 3 massless modes (interpreted

as neutrinos) whose masselessness can be attributed to the conservation of isospin.

I furthermore realized that (in contrast to an ordinary tetrahedron) a tetrahedron

of pseudovectors is chiral, and that this can be used to explain the parity violation

of the weak interacation.

In 2013 I united physical and isospin space to a larger 6-dimensional space, with
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a corresponding 6+1 dimensional spacetime continuum and began to understand

the SM Higgs mechanism as an alignment of isospin vectors in that space[1]. This

requires that each point of 3-dimensional physical space actually is a tetrahedron,

not extending into physical space but into the 3 extra dimensions. In other words,

our universe is nowhere empty but an elastic substrate, microscopically formed by

discrete tetrahedrons. The tetrahedrons consists of tetrons transforming according

to (2) and making up the backbone of our universe. Furthermore, the transforma-

tions in isospin space are not just abstract symmetry operations but corresonds to

real rotations in 3 extra dimensions.

At the end of the 2010s, I dealt with cosmological implications of the model[3]. Af-

terwards I turned to quark and lepton mixing matrices and found a way to determine

them within the tetron theory[2].
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