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Abstract

A parameter-free analytic expression for the PMNS matrix is derived which fits

numerically all the measured matrix components at 99.7% confidence. Results are

proven within the microscopic model and include a prediction of the leptonic Jarlskog

invariant. The approach is universal in the sense that it can be applied to the quark

sector as well. Preliminary numbers obtained for the CKM matrix elements look

promising, but are plagued with large theoretical errors.



Introduction

As well known there is a mixing between the flavor and mass eigenstates of the 3

neutrino species, and this can be described by a unitary matrix, the PMNS neutrino

mixing matrix[1, 2]. The experimentally relevant quantities are the absolute values

of the matrix elements, which describe the amount of admixture of the flavor into

mass eigenstates, and the leptonic Jarlskog invariant which describes any possible

CP violation in the leptonic sector.

Since the discovery of neutrino oscillations, many models of neutrino mass and

mixings have been constructed. The most straightforward approach is to incorporate

Dirac neutrino masses into the Standard Model by introducing three right-handed

neutrinos coupled to a Higgs field analogously to the quarks and charged leptons.

Unfortunately, within the SM the values of the mixing parameters cannot be pre-

dicted.

Leading symmetric Approximation

In a first step a leading order result for the mixing matrix will be derived which is

VPMNS = exp

{
i√
3


0 1 0

1 1 −1

0 −1 −1


}

=


0.8467− i0.0300 −0.1489 + i0.4861 0.1532− i0.00051

−0.1489− i0.4861 0.5446 + i0.4568 −0.00433− i0.4858

0.1532− i0.00051 −0.00433− i0.4858 0.6892− i0.5153

 (1)

while an improved formula will be given later in (28).

The leading order expression (1) is a complex, symmetric and unitary matrix, and

the absolute values of the matrix elements can be calculated numerically and com-

pared to measurements
0.843 0.510 0.153

0.510 0.711 0.486

0.153 0.486 0.861

 vs.


0.80− 0.85 0.51− 0.58 0.142− 0.155

0.23− 0.51 0.46− 0.69 0.63− 0.78

0.25− 0.53 0.47− 0.70 0.61− 0.76

 (2)

By inspection one concludes that the agreement is reasonable but not optimal, with

the 23 entry being the most critical. The first row, which is best measured, is
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also best fitting. Concerning the other rows, the experimental results in (2) are

non-symmetric, though with very large errors. It will be described later, in con-

nection with (28) and (29), how (1) can be improved by additional non-symmetric

contributions so that complete agreement within the errors is obtained.

A prediction for the leptonic Jarlskog invariant[3] can be calculated from (1) as

JPMNS = ℑ(Ve1Vµ2V̄e2V̄µ1) = −0.0106 (3)

This value is large as compared to the Jarlskog parameter of the CKM matrix[4].

JPMNS has not been measured so far, although there are experimental indications

that leptonic CP violation is indeed rather large[5].

Motivation and Proof

The model, on which the proof is based[6, 7], starts from a fundamental isospin

doublet field Ψ = (ψ↑, ψ↓) consisting of two SO(3,1) Dirac fields ψ↑ and ψ↓. Ordinary

matter quarks and leptons are considered as excitations of isospin vectors

Q⃗L =
1

4
Ψ†(1− γ5)τ⃗Ψ Q⃗R =

1

4
Ψ†(1 + γ5)τ⃗Ψ (4)

of the Ψ-field, namely as fluctuations δQ⃗L and δQ⃗R of the ground state values ⟨Q⃗L⟩
and ⟨Q⃗R⟩. τ⃗ = (τx, τy, τz) are the Pauli matrices in ‘internal’ isospin space, whose

coordinates will be denoted as x, y and z.

Note that the corresponding excitations δΨ are fermions, but their dynamics can

best be described in terms of isospin vectors (4). Namely, mass eigenvalues can be

calculated using Hamiltonians H which involve interactions of the isospin vectors

and then diagonalizing the equations

dQ⃗L,R

dt
= i [H, Q⃗L,R] (5)

Assuming a suitable tetrahedral configuration for the isospin vectors, 24 eigenvalues

arise from (5), which are interpreted as the quark and lepton masses[6, 7].

While the masses correspond to the eigenvalues, CKM and PMNS mixings can be

deduced from the eigenvectors. The relation between the eigenvectors, the mass

eigenstates and the weak interaction eigenstates are clarified in the following discus-

sion. Thereby, the result (1) and its improvement (28) for the PMNS matrix will be

obtained.
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The first step is to label the quark and lepton mass states in terms of the vectors

δQ⃗. More in detail, the following definitions are used:

|S⃗⟩ = δQ⃗L |T⃗ ⟩ = δQ⃗R (6)

Dirac’s notation with bra and ket states is applied here to make the mixing relations

more transparent. In fact, (6) are orthonormal vector states and can be used to

write down the equations for the neutrino mass eigenstates, as obtained from the

diagonalization procedure[7]

|νe,m⟩ =
1√
6
[(|Sx⟩+ |Tx⟩) + (|Sy⟩+ |Ty⟩) + (|Sz⟩+ |Tz⟩)]

|νµ,m⟩ =
1√
6
[(|Sx⟩+ |Tx⟩) + ω(|Sy⟩+ |Ty⟩) + ω̄(|Sz⟩+ |Tz⟩)]

|ντ,m⟩ =
1√
6
[(|Sx⟩+ |Tx⟩) + ω̄(|Sy⟩+ |Ty⟩) + ω(|Sz⟩+ |Tz⟩)] (7)

The corresponding result for the charged leptons is

|em⟩ =
1√
6
[(|Tx⟩ − |Sx⟩) + (|Ty⟩ − |Sy⟩) + (|Tz⟩ − |Sz⟩)]

|µm⟩ =
1√
6
[(|Tx⟩ − |Sx⟩) + ω(|Ty⟩ − |Sy⟩) + ω̄(|Tz⟩ − |Sz⟩)]

|τm⟩ =
1√
6
[(|Tx⟩ − |Sx⟩) + ω̄(|Ty⟩ − |Sy⟩) + ω(|Tz⟩ − |Sz⟩)] (8)

The appearance of the complex numbers

ω = −1− i
√
3

2
ω̄ = −1 + i

√
3

2
(9)

corresponding to rotations by 120 and 240 degrees are an effect of the underlying

tetrahedral symmetry. They turn the expressions (7) and (8) into symmetry adapted

functions.

The lepton mass states actually can be brought to the much more compact form
|νem⟩
|νµm⟩
|ντm⟩

 = Z


|Vx⟩
|Vy⟩
|Vz⟩



|em⟩
|µm⟩
|τm⟩

 = Z


|Ax⟩
|Ay⟩
|Az⟩

 (10)

by using the quantities

|V⃗ ⟩ = 1√
2
(|S⃗⟩+ |T⃗ ⟩) |A⃗⟩ = 1√

2
(|T⃗ ⟩ − |S⃗⟩) (11)
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and the Z3 Fourier transform matrices

Z =
1√
3


1 1 1

1 ω ω̄

1 ω̄ ω

 Z† =
1√
3


1 1 1

1 ω̄ ω

1 ω ω̄

 (12)

It is interesting to note that the eigenfunctions (7), (8) and (10) are stable against

variations of all the isospin couplings one may use in the Hamiltonian H in (5).

In consequence, the neutrino mixing matrix does not depend on any fermion mass

values. This implies a stable and unambiguous prediction for the PMNS matrix and

is in contrast to the CKM matrix in the quark sector, where a mass dependence

shows up, cf. Eq. (39) later.

As well known, the defining equation for the PMNS matrix is

[
⟨νew| ⟨νµw| ⟨ντw|

]
W+

µ


|ew⟩
|µw⟩
|τw⟩

 =
[
⟨νem| ⟨νµm| ⟨ντm|

]
W+

µ VPMNS


|em⟩
|µm⟩
|τm⟩

 (13)

where the index w denotes weak interaction eigenstates, and it is understood that

we talk about left handed fields only. The mixing matrix is formally given by

VPMNS = VNV
†
L =


V1e V1µ V1τ

V2e V2µ V2τ

V3e V3µ V3τ

 (14)

where

VN =


⟨νem|
⟨νµm|
⟨ντm|

[
|νew⟩ |νµw⟩ |ντw⟩

]
V †
L =


⟨ew|
⟨µw|
⟨τw|

[
|em⟩ |µm⟩ |τm⟩

]
(15)

Replacing the mass eigenstates by the isospin excitations according to (10) one

obtains

VPMNS = Z

{
⟨Vx|
⟨Vy|
⟨Vz|

[
|νew⟩ |νµw⟩ |ντw⟩

]
⟨ew|
⟨µw|
⟨τw|

[
|Ax⟩ |Ay⟩ |Az⟩

]}
Z† (16)
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By inspection one sees that (16) exactly compensates all the matrix transformations

in (13) and (10) so as to maintain lepton universality and keep the weak current

diagonal in the weak eigenstates.

The brace in (16) comprises a matrix of expectation values of the form

Y :=


⟨Vx|
⟨Vy|
⟨Vz|

O
[
|Ax⟩ |Ay⟩ |Az⟩

]
(17)

where the inner product

O :=
[
|νew⟩ |νµw⟩ |ντw⟩

]
⟨ew|
⟨µw|
⟨τw|

 (18)

is a dyadic 1-dimensional operator which acts between the complex 3-dimensional

spaces of charged lepton (∼ S⃗− T⃗ ) and antineutrino (∼ S⃗+ T⃗ ) states. One may say

that it contains all information about what the charged W-boson does to the lepton

fields: it changes isospin, mixes families and so on. Weak SU(2) and tetrahedral

symmetry force O to have the form

O = |Sx⟩ ⟨Tx|+ |Sy⟩ ⟨Ty|+ |Sz⟩ ⟨Tz| − |Tx⟩ ⟨Sx| − |Ty⟩ ⟨Sy| − |Tz⟩ ⟨Sz|

+
i√
3
[|Sy⟩ ⟨Sz|+ |Sz⟩ ⟨Sy| − |Ty⟩ ⟨Tz| − |Tz⟩ ⟨Ty|]

+
i√
3
[ω |Sx⟩ ⟨Sy|+ ω̄ |Sy⟩ ⟨Sx| − ω |Tx⟩ ⟨Ty| − ω̄ |Ty⟩ ⟨Tx|]

+
i√
3
[ω̄ |Sx⟩ ⟨Sz|+ ω |Sz⟩ ⟨Sx| − ω̄ |Tx⟩ ⟨Tz| − ω |Tz⟩ ⟨Tx|] (19)

In order to derive (19) one has to note that SU(2) invariance allows the appearance

of dot products and triple products only. The coefficients of these products are then

dictated by the tetrahedral symmetry of the isospin vectors. For example, to derive

the triple product coefficients one should remember that the W+-boson is defined

in the 3 internal dimensions in an analogous manner as a plus circularly polarized

wave in 3 spatial dimensions, namely by means of an (internal) ‘polarization vector’

e⃗+ = (e⃗1 + ie⃗2)/
√
2 which is perpendicular to the axis of quantization, in this case

given by ∼ (1, 1, 1).

e⃗1 =
1√
2
(0, 1,−1) e⃗2 =

1√
6
(−2, 1, 1) (20)
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Introducing the vector

Ω⃗ =
1√
3
(1, ω, ω̄) (21)

allowed contributions to O are of the triple product form

εijk
1√
2
(e⃗1 + ie⃗2)i |Qj⟩ ⟨Q′

k| = − i√
3
Ω⃗(Q⃗× Q⃗′) = − i√

3
[ |Q′

y⟩ ⟨Qz| − |Q′
z⟩ ⟨Qy|

−ω(|Q′
x⟩ ⟨Qz| − |Q′

z⟩ ⟨Qx|) + ω̄(|Q′
x⟩ ⟨Qy| − |Q′

y⟩ ⟨Qx| ) ] (22)

for the ket and bra states belonging to any 2 internal angular momenta Q and Q′.

These contributions are anti-hermitian, and care must be taken in the definition of

the complex triple product when using complex conjugation in the determination of

O.

Note that O as given in (19) is universal in the sense that it depends only on

properties of the Ψ field, and therefore will appear in identical form within the

quark sector and the calculation of the CKM matrix. This fact reflects the quark

lepton universality of the W-boson interactions.

Inserting (19) into (17) one obtains

Y =


⟨Vx|
⟨Vy|
⟨Vz|

O
[
|Ax⟩ |Ay⟩ |Az⟩

]
= I +X (23)

i.e. a sum of a hermitian part (the unit matrix I) and an anti-hermitian matrix

X = − i√
3


0 ω̄ ω

ω 0 1

ω̄ 1 0

 (24)

The invariant structure which gives the unit matrix in (23) is the dot product,

while the invariant structure belonging to the anti-hermitian contribution X is the

triple product. The unit matrix corresponds to no mixing at all, so the origin of a

non-trivial PMNS matrix is to be found solely in the triple product terms (22).

***(folgender Satz ist neu) The result (23) is anti-hermitian and not unitary, because

it represents the leading term in the series exp(X) to enter the unitary PMNS matrix
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in the following way

VPMNS = ZeXZ† = eZXZ†

=
1

3


1 1 1

1 ω ω̄

1 ω̄ ω

 exp

{
−i√
3


0 ω̄ ω

ω 0 1

ω̄ 1 0


}

1 1 1

1 ω̄ ω

1 ω ω̄



=


0.8467− i0.0300 −0.1489 + i0.4861 0.1532− i0.00051

−0.1489− i0.4861 0.5446 + i0.4568 −0.00433− i0.4858

0.1532− i0.00051 −0.00433− i0.4858 0.6892− i0.5153

(25)
Note that this is identical to what was claimed in (1).

Improved Formula for the PMNS Matrix

So far only dot product and triple product terms (22) have been considered as

contributing to the operator (19) and the PMNS result. Actually, there is a third

kind of term that needs consideration. Using Ω⃗2 = 0 and the same normalization as

in (22) it is of the form

−(Ω⃗× Q⃗) (Ω⃗× Q⃗′) = (Ω⃗Q⃗) (Ω⃗Q⃗′) (26)

In the microscopic model, quark and lepton masses are related to torsional, Heisen-

berg and Dzyaloshinskii isospin interactions of the fundamental Ψ field. Further-

more, as shown in [11], these three types of interactions completely fix the structure

of the model.

This fact is reflected in the contributions to the operator O: while the dot prod-

ucts and triple products appearing in (19) parallel the torsional and Heisenberg

interactions, (26) corresponds to the Dzyaloshinskii Hamiltonian. Working out the

products |Qi⟩ ⟨Q′
j| arising from (26), it leads to an additional contribution to (19)

which can be comprised by a matrix

D :=
1

3


1 ω ω̄

ω ω̄ 1

ω̄ 1 ω

 (27)

The role of D for (26) is analogous to that of X for the triple product term. Com-

bining the X and D contributions an improved formula for the PMNS matrix is
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obtained

VPMNS = exp

{
1

3


0 0 0

0 0 1

0 −1 0


}

exp

{
i√
3


0 1 0

1 1 −1

0 −1 −1


}

(28)

This represents a complex and unitary matrix whose absolute value matrix |VPMNS|
is not symmetric, in contrast to (1). Its elements are given by

0.847 0.510 0.153

0.468 0.581 0.666

0.251 0.635 0.730

 vs.


0.80− 0.85 0.51− 0.58 0.142− 0.155

0.23− 0.51 0.46− 0.69 0.63− 0.78

0.25− 0.53 0.47− 0.70 0.61− 0.76

 (29)

and fit the phenomenological numbers to within one standard error.

The value of the leptonic Jarlskog invariant now is

JPMNS = 0.0454 (30)

Thus, while the improvement (28) only moderately corrects the absolute values,

it strongly modifies the prediction for JPMNS. This is because - in contrast to

the absolute values - the Jarlskog invariant is dominated by higher orders of the

exponential expansion.

Application to the Quark Sector

Mixing in the quark sector has been known since the time of Cabibbo[8]. Although

the mixing percentages are smaller, it is much better measured than in the lepton

sector. On the other hand, concerning theory, the predictions for the CKM mixing

elements in the present model are somewhat more difficult to obtain, though parts

of the arguments for leptons can be taken over to the quark sector. The idea is

again that the mixing matrix counterbalances the deviation of the mass eigenstates

from the weak eigenstates in such a way that the charged current effectively acts

diagonal on the isospin operators (6). The main complication is the appearance of

mass dependent factors in the quark eigenstates, see below.
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The CKM matrix is defined analogously to the PMNS matrix (14) and (15)

VCKM = VUV
†
D =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



=


⟨um|uw⟩ ⟨um|cw⟩ ⟨um|tw⟩
⟨cm|uw⟩ ⟨cm|cw⟩ ⟨cm|tw⟩
⟨tm|uw⟩ ⟨tm|cw⟩ ⟨tm|tw⟩



⟨dw|dm⟩ ⟨dw|sm⟩ ⟨dw|bm⟩
⟨sw|dm⟩ ⟨sw|sm⟩ ⟨sw|bm⟩
⟨bw|dm⟩ ⟨bw|sm⟩ ⟨bw|bm⟩

 (31)

where m denotes mass eigenstates (the physical states) and w weak interaction

eigenstates.

Solving the eigenvalue problem (5) leads to mass eigenstates for the up-type quarks

um =
1

√
3
√

1 + ϵ21
[(|Sx⟩+ ϵ1 |Tx⟩) + (|Sy⟩+ ϵ1 |Ty⟩) + (|Sz⟩+ ϵ1 |Tz⟩)]

cm =
1

√
3
√

1 + ϵ22
[(|Sx⟩+ ϵ2 |Tx⟩) + ω(|Sy⟩+ ϵ2 |Ty⟩) + ω̄(|Sz⟩+ ϵ2 |Tz⟩)]

tm =
1

√
3
√

1 + ϵ23
[(|Sx⟩+ ϵ3 |Tx⟩) + ω̄(|Sy⟩+ ϵ3 |Ty⟩) + ω(|Sz⟩+ ϵ3 |Tz⟩)] (32)

and for the down quarks

dm =
1

√
3
√

1 + ϵ21
[(|Tx⟩ − ϵ1 |Sx⟩) + (|Ty⟩ − ϵ1 |Sy⟩) + (|Tz⟩ − ϵ1 |Sz⟩)]

sm =
1

√
3
√

1 + ϵ22
[(|Tx⟩ − ϵ2 |Sx⟩) + ω(|Ty⟩ − ϵ2 |Sy⟩) + ω̄(|Tz⟩ − ϵ2 |Sz⟩)]

bm =
1

√
3
√

1 + ϵ23
[(|Tx⟩ − ϵ3 |Sx⟩) + ω̄(|Ty⟩ − ϵ3 |Sy⟩) + ω(|Tz⟩ − ϵ3 |Sz⟩)] (33)

Three coefficients ϵ1,2,3 appear in these equations, which depend on the quark and

even on the lepton masses. They can be calculated within the model. Namely, as

proven in [11], each ϵi to a very good approximation only depends on the quark

and charged lepton masses of the i-th family. More precisely, one can derive the

formula[11]

ϵi =
1

6

MLi

MUi +MDi

(34)

where MUi, MDi and MLi denote the corresponding masses within family i.
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By inspection one sees that the lepton eigenfunctions (7) and (8) are recovered from

(32) and (33) by chosing ϵ3 = ϵ2 = ϵ1 = 1. It should be stressed, however, that

this is only formally true, because the quark states are defined in a different space

than the lepton states. The point is that for simplicity reference has been made so

far to only one of the four isospins I, II, III and IV on the tetrahedral structure.

While the contributions from I-IV to the lepton states are identical and of the form

I+II+III+IV, the generic form of the quark states turns out to be 3×I-II-III-IV,

3×II-I-III-IV and 3×III-II-IV for the 3 colors, respectively.

Knowing the eigenstates (32) and (33) one may write down the CKM matrix in an

analogous fashion as the PMNS matrix (16) for leptons

VCKM =

{
RZ


⟨Sx|
⟨Sy|
⟨Sz|

+REZ


⟨Tx|
⟨Ty|
⟨Tz|

}[
|uw⟩ |cw⟩ |tw⟩

]
⟨dw|
⟨sw|
⟨bw|

×

×
{[

|Tx⟩ |Ty⟩ |Tz⟩
]
Z†R−

[
|Sx⟩ |Sy⟩ |Sz⟩

]
Z†ER

}
(35)

where the matrices

E :=


ϵ1 0 0

0 ϵ2 0

0 0 ϵ3

 R :=


1√
1+ϵ21

0 0

0 1√
1+ϵ22

0

0 0 1√
1+ϵ23

 (36)

have been introduced.

Just as in the case of leptons (18) there is a 1-dimensional dyadic transformation

O =
[
|uw⟩ |cw⟩ |tw⟩

]
⟨dw|
⟨sw|
⟨bw|

 (37)

which operates between the 3-dimensional spaces of up- and down-type quark states.

Due to quark-lepton universality, when expressed in terms of operators S⃗ and T⃗ ,

the operator O for quarks must be identical to what was used for leptons in (19).

Restricting, for a moment, on the dot and triple product contributions (19) as input,

one may then calculate VCKM given in (35) to be

VCKM = I +RZXZ†ER +REZXZ†R → exp{RZXZ†ER +REZXZ†R} (38)
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where I is the 3×3 unit matrix arising from the dot product terms in (19). The

other terms in (38) are the anti-hermitian contributions from the triple product in

(22) and (19). They replace the expression ZXZ† in (25) for leptons.

Just as in the case of leptons one may improve on this result by including the

contributions from (26), in order to obtain the desired non-symmetric contributions

to |VCKM |. The improved formula for the CKM matrix reads

VCKM = exp{2[RZDZ†ER−REZD†Z†R]} exp{RZXZ†ER +REZXZ†R} (39)

In contrast to X in (24) the matrix D in (27) is not anti-hermitian. This fact has

been accounted for in the first exponential factor.

Eq. (39) allows to evaluate |VCKM | using appropriate values for the fermion masses

entering (34). It must be noted, however, that the low energy values of the ϵi

are not useful in this context. Instead one should use running masses near the

Planck scale, because the dynamics generates fermion masses originally at Planck

scale distances1. Unfortunately, the predictions for running masses are not very

precise because higher order contributions become appreciable at very large scales.

Nevertheless, I am using results from the literature[9, 10] to determine the ϵi at high

scales.

ϵ1 = 0.35 ϵ2 = 0.070 ϵ3 = 0.0040 (40)

unfortunately with a large theoretical error[10], whose magnitude even is hard to

estimate. The numbers are for a 2HDM (2 Higgs doublet model) which is known to

be the low-energy limit of the microscopic model[6]. They exhibit a family hierarchy

which will be seen to induce a corresponding hierarchy in the mixing of the quark

families. Actually, as discussed in earlier work[7], this is to be expected within the

present model due to the large top mass which forces the up- and down-type mass

eigenstates to be approximately ∼ S⃗ and ∼ T⃗ , respectively, in (32) and (33), much

unlike the lepton states which are ∼ S⃗ ± T⃗ according to (10).

Just as masses, CKM matrix elements are running, i.e. dependent on the scale

paramter t = ln E
µ
where E is the relevant energy scale and µ the renormalization

1A GUT scale is not present in the model. There is only the Fermi scale, defined as the

interaction energy of the isospin vectors, and the Planck scale, defined as the binding energy of

the fields Ψ[6].
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scale. The running of the absolute values of the CKM matrix elements has been

discussed for the 2HDM in [10]. It turns out to be remarkably simple, at least in

leading order, because it can be given in terms of one universal function h(t).

|VCKM(t)| ≈


|Vud(0)| |Vus(0)| |Vub(0)|

h(t)

|Vcd(0)| |Vcs(0)| |Vcb(0)|
h(t)

|Vtd(0)|
h(t)

|Vts(0)|
h(t)

|Vtb|(0)

 (41)

For the Jarlskog invariant one has

JCKM(t) ≈ JCKM(0)

h2(t)
(42)

In the 2HDM case h(t) is a moderately varying function. According to [10] it

increases by about 20% when going from GeV to Planck scale energies.

Using (39) and (40) I have calculated the CKM elements at high energies and then

extrapolated them back to GeV energies according to (41). I obtain the matrix

|VCKM | of absolute values
0.974 0.224 0.0035

0.224 0.973 0.044

0.0080 0.043 0.9991

 vs.

0.9734− 0.9740 0.2235− 0.2251 0.00362− 0.00402

0.217− 0.225 0.969− 0.981 0.0394− 0.0422

0.0083− 0.0088 0.0404− 0.0424 0.985− 1.043

(43)
The numbers look reasonable, as compared to the phenomenological values, and

show the correct hierarchy and orders of magnitude. However, the theoretical un-

certainty from the scale evolution is large and difficult to estimate, in particular

concerning quark mass values near the Planck scale. For example, ϵ1 accommodates

the Cabbibo angle correctly, whereas the ‘23’-matrix elements |Vts| and |Vcb| ten-
dencially come out too large, while the ‘13’-elements |Vub| and |Vtd| are typically too

small. These deviations may seem being just 2σ effects, but as stressed before the

theoretical error from the quark mass evolution is extremely difficult to handle.

Similarly, concerning the Jarlskog invariant one obtains JCKM = 0.000027, a bit

small when compared to the observed value JCKM = (3.00 + 0.15− 0.09)× 10−5.

In conclusion, explicit analytic and numerical results for the mixing matrices have

been presented in this work. Of particular interest are the prediction for the PMNS

matrix (28) and the fermion mass dependence of the CKM matrix as given by (39).
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Figure 1: Transition between the CKM and the PMNS limit of the matrix elements

|V12| and |V13| and the Jarlskog invariant (from left to right) as a function of the

parameter α defined in the main text. For example, |V12| starts with its CKM value

0.224 at α = 0 and grows towards the PMNS value at α = 1.

Actually, (39) is universal in that it embraces (i) the case of no mixing (ϵ1 = ϵ2 =

ϵ3 = 0), (ii) the CKM prediction obtained with ϵi-values (40) and (iii) the PMNS

formula which formally is given using ϵ1 = ϵ2 = ϵ3 = 1. To make this visible, I have

drawn in Fig. 1 the ‘12’ (i.e. Cabibbo) and the ‘13’ matrix element and the Jarlskog

invariant as a function of a parameter α. α is introduced to avoid drawing the full

ϵi-dependence of the matrix elements and defined in such a way that it vanishes in

the CKM case and takes the value of 1 in the PMNS limit. More precisely, one has

ϵ1 = 0.35 + 0.65α ϵ2 = 0.07 + 0.93α ϵ3 = 0.004 + 0.996α (44)
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